(nC0 + nC1 + ... + nCn)2 = C02+C12+...+Cn2 + S where S excludes the case i=j
=> S = 22n - ΣCi2
(1+x)n = C0 + C1x + .. . + Cnxn
(x+1)n = C0xn + C1xn-1 + .. . + Cn
Multiplying these two,and equating the coeff of xn,
ΣCi2 = 2nCn
So, S = 22n - 2nCn
Find the sum of the given expression here:
\sum_{0\leq i\neq j\leq n}{\left( ^nC_i\times ^nC_j\right)}
(nC0 + nC1 + ... + nCn)2 = C02+C12+...+Cn2 + S where S excludes the case i=j
=> S = 22n - ΣCi2
(1+x)n = C0 + C1x + .. . + Cnxn
(x+1)n = C0xn + C1xn-1 + .. . + Cn
Multiplying these two,and equating the coeff of xn,
ΣCi2 = 2nCn
So, S = 22n - 2nCn