18-5-2009 positive numbers

we are given 201 different numbers such that sum of any 100 numbers is less than the sum of remaining 101 numbers. prove that all the numbers are positive .

1 Answers

1
dimensions (dimentime) ·

let\ a_1,a_2...a_{201} \ be\ the\ no's\ such\ that\ a_{1}>a_{2}>...>a_{200}>a_{201}\\ \\ given\ a_1+a_2+...a_{100}<a_{101}+...+a_{201}....(i)\\ \\ and\ similarly\ a_{101}+a_{102}+...+a_{200}<a_1+a_2+...+a_{100}+a_{201}\\ \\ adding\ a_{201}\ to\ both\ sides\\ \\ a_{101}+a_{102}+...+a_{200}+a_{201}<a_1+a_2+...+a_{100}+2a_{201} ....(ii)\\ \\ from\ (i)\ &\ (ii)\\ \\ a_1+a_2+...a_{100}<a_1+a_2+...a_{100}+2a_{201}\\ \\ =>a_{201}>0 \\ \\ now, minimum\ of\ all\ 201\ no's\ is\ positive\ hence\ all\ the\ no's\ should\ be\ positive..

Your Answer

Close [X]