Find the limit...

\lim_{x\rightarrow a}\frac{1}{(x-a)}\int_{\sqrt{a}}^{\sqrt{x}}(te^t sin t)dt a>0

12 Answers

11
sagnik sarkar ·

is the ans easin√a/2

1
ARKA(REEK) ·

I think something's wrong ... Sagnik ...

If the actual expr. is considered as f(x) ..

Then ... f'(a) is the expr. that u have derived .... It's not the value of f(a) .... !!!!

23
qwerty ·

arka he used L'Hospital

1
ARKA(REEK) ·

But QWERTY ... using Leibnitz theorem gives the same ans .....

1
जय ·

i wonder how qwerty has such a immense brilliance [123]

1
rajnishan sharma ·

l'hosp n leibnitz in both v hav to diff d numr n denominator so in both way v can gt d anz

1
sahil jain ·

actually ,,really gud questiotn ,,combined use of l'hospital rule n leibnitz formula

1
Aashish Jindal ·

Is the answer ∞

1
sahil jain ·

no ashish, the first answer is correct.

62
Lokesh Verma ·

Arrey no one with any good explanation!!

23
qwerty ·

L = lim_{x\rightarrow a} \frac{\int_{\sqrt{a}}^{\sqrt{x}}{te^{t}sintdt}}{x-a}
using L Hospital
L = lim_{x\rightarrow a}\frac{1}{2\sqrt{x}}\sqrt{x}e^{\sqrt{x}}sin\sqrt{x}

L = \frac{1}{2}e^{\sqrt{a}}sin\sqrt{a}

1
rdkirg ·

kya baat kya baat kya baat

Your Answer

Close [X]