-
Let [x] denote the greatest integer less than or equal to x and {x} = x-[x] (commonly known as fractional part of x). Find all continuous functions f such that {f(x+y)} ={f(x)}+{f(y)} ...
-
Hello All, Dr. Ramaswami Committee has recommended a Common Engineering Entrance Examination for entry to Engineering Colleges in the country, including IITs, NITs and other colleges. It is proposed: a. To compute normalized ...
-
This site http://eamcet.org.in/EAMCET-MODEL-PAPERS.php gives information about Eamcet exam. Engineering, Agriculture and Medical Common Entrance Test (EAMCET), Andhra Pradesh is conduct by Jawaharlal Nehru Technological Unive ...
-
\hspace{-16}$If $\mathbf{A=\int_{0}^{1}\{x^{50}-(2-x)^{50}\}dx}$ and $\mathbf{B=\int_{0}^1\{x^{50}.(1-x)^{50}\}dx}$.\\\\\\ Then $\mathbf{\frac{A}{B}=}$ ...
-
\hspace{-16}$The Value of $\mathbf{m}$ for Which the equations\\\\ $\mathbf{(5m-m^2)^2.\sin^2 x-10.\sin x.(5m-m^2)+24=0}$\\\\ Has exactly $\mathbf{\underline{\bold{Three}}}$ Solution in $\mathbf{[0,2\pi].}$ ...
-
\hspace{-16}(1)\;\; $Total no. of Selecting $\mathbf{10}$ Balls from an Unlimited no. of Identical\\\\ Red, Green and Yellow Balls is =$\\\\\\ (2)\;\; $There are $\mathbf{15}$ Matching pairs of Shocks in Drawer.\\\\ $\mathbb{ ...
-
*Image* ...
-
Can anyone tell me whcih mechanism u need to know for jee in organic chem in aldehydes and ketones just the names would do enough . Thank you ...
-
\hspace{-16}$Let $\mathbf{f:\mathbb{R}\rightarrow \mathbb{R}}$ be a Continuous function and $\mathbf{f(x)=f(2x)\forall x\in \mathbb{R}}.$\\\\ If $\mathbf{f(1)=3}$.Then the value of $\mathbf{\int_{-1}^{1}f(f(x))dx=}$ ...
-
\hspace{-16}$Min. distance b/w $\mathbf{y^2=4x}$ and $\mathbf{x^2+y^2-12x+31=0}$ is ...
-
\hspace{-16}$The Curve $\mathbf{y=(\mid x \mid-1)sgn(x-1)}$ Divides $\mathbf{\frac{9x^2}{64}+\frac{4y^2}{25}=\frac{1}{\pi}}$\\\\\\ in Two parts having Area $\mathbf{A_{1}}$ and $\mathbf{A_{2}},$ Where $\mathbf{(A_{1}>A_{2} ...
-
\hspace{-16}\mathbf{\int_{0}^{5}\left[\{\sin^2 x+\cos(\ln (x))+e^{3x}\}\right]dx=}$\\\\ Where $\mathbf{[x]=}$ Greatest Integer function\\\\ and $\mathbf{\{x\}=}$ Fractional part function. ...
-
\hspace{-16}\mathbf{\int_{1}^{2}\frac{1}{\left(\sqrt{2x-x^2}+2\right)^2}dx} ...
-
\hspace{-16}$Find Real value of $\mathbf{m}$ .If Given equation have Real solution\\\\\\ $\mathbf{\sqrt{x + 6 \sqrt{x - 9}} + \sqrt{x - 6 \sqrt{x-9}} = \dfrac{x+m}{6}}$ ...
-
\hspace{-16}$If $\mathbf{x,y\in\mathbb{R^{*}}}$ and $\mathbf{xy\leq 1}$ and $\mathbf{\left(x+\sqrt{x^2+1}\right).\left(y+\sqrt{y^2+1}\right)=1}$\\\\\\ Then $\mathbf{\sqrt{\frac{x}{y}+\frac{y}{x}+6}=}$ ...
-
\hspace{-16}$If $\mathbf{\cos ^n(x)-\sin^{n}(x)=1}$ have $\mathbf{11}$ Roots in $\mathbf{\left[0,\frac{23\pi}{2}\right)}$. Then $\mathbf{n}$ can be ...
-
\hspace{-16}$If $\mathbf{[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+.......+[\sqrt{x^2-1}]=y}$\\\\ Then $\mathbf{(x,y)=}$ ...
-
\hspace{-16}$Min. Area of Circle Which touches the Parabolas $\mathbf{y=x^2+1}$ and $\mathbf{x=y^2+1}$ ...
-
*Image* ...
-
*Image* ...
-
If the probability that there are exactly 4 persons between A and B while seating 15 persons around a round table is p/q (where p and q are in their lowest form), then find p+q? ...
-
\hspace{-16}$Find no. of Integer Solution $\mathbf{(x,y,z)}$ of the equation\\\\ $\mathbf{x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=24}$ No solution. ...
-
\hspace{-16}$Let $\mathbf{(x,y)}$ be Real variables Satisfying $\mathbf{x^2+y^2+8x-10y-40=0}$\\\\ If $\mathbf{a=Max\{(x+2)^2+(y-3)^2\}}$ and $\mathbf{b=Min\{(x+2)^2+(y-3)^2\}}$\\\\ Then find\\\\ (i)\;\; $\mathbf{a+b=}$\\\\ (i ...
-
\hspace{-16}$The no. of Integral values of $\mathbf{a}$ so that $\mathbf{x^2-(a+1)x+(a-1)=0}$\\\\ has Integral Roots. ...
-
If the equation x2+ax+6a=0 has integer roots,then the no of values of a is ? i got 4...just verifying if its correct... ...
-
Q) prove that the img. roots of a quadratic eqn. 'ax2 + bx + c = 0' always occur in conjugate pairs. where a,b,c E R ...
-
What to do and what not to do in the last month before IIT-JEE http://www.youtube.com/watch?v=Z5-AfiJxjOc&context=C4acfebbADvjVQa1PpcFMQX-FKsRHXxJDA7RTt_k4sN1NL6Iapsuo= ...
-
\hspace{-16}$Find all Integer pairs $\mathbf{(n,r)}$ for which $\mathbf{\binom{n}{r}=120}$ ...
-
\hspace{-16}(1)\;\; $If $\mathbf{19!=1216451\underline{a}0408832000}$. Then $\mathbf{a=}$\\\\ (2)\;\; If $\mathbf{34!=95232799\underline{c}\;\underline{d}96041408476186096435\underline{a}\;\underline{b}000000}$\\\\ Then $\mat ...
-
They say for a quadratic eqn. 'ax2 + bx + c = 0' to have integer roots 'a' must equal 1 and the roots must be rational. Prove that when this happens the roots will have be integers...!! ...