-
The parabola whose focus is (1,0) and the directrix is x+3=0 intersects y-axis at y= ...
-
The chord of the circle x2+y2=4 which is bisected at point (1,1) crosses y-axis at y= ...
-
The chord of contact of the tangents drawn from point (1,2) to the circle x2+y2-2x+4y+7=0 intersect x-axis at x= ...
-
Find the length of the tangent drawn from point (2,2) to the circle x2+y2+4x+4y+4=0 ...
-
Find eqn. of normal to circle x2+y2+2x+4y+3=0 at point (-2,-3) ...
-
Eqn. of tangent to the circle x2+y2-30x+6y+109=0 at (4,-1) passes through the point ...
-
For what value of c, will the line 4x+7y=c will be tangent to the circle x2+y2+4x+6y+13=0 ...
-
Find the intercepts made by the circle x2+y2-12x-10y+20=0 on coordinate axes. ...
-
Find the eqn. of the circle, coordinate of the end points of whose diameter are (2,1) and (4,2). ...
-
Find the centre and radius of the circle whose eqn. is x2+y2+8x+-6y+24=0 ...
-
Find eqn. of the circle whose centre (1,1) and passing through (1,-1). ...
-
Find the eqn. of line whose intercepts on the axes are roots of the eqn. 2x2-13x+15=0. Also intercept on x-axis > intercept on y-axis. ...
-
Find the eqn. of line passing through origin and midpoint of line joining points (3,5) and (7,9). ...
-
Find the eqn. of line which cuts of an intercept of length 2 on x-axis and is perpendicular to the line x+2y-5=0. ...
-
Find the eqn. of the perpendicular bisector of the line segment joining points (2,3) and (6,-5). ...
-
The 3 points of a triangle are (4,3), (9,8)and (3/4,-1/4). Find the area. ...
-
lim(x→1) (x3+x2-x-1)/(x2-1) ...
-
lim(x→0) (ex-e-x)/sinx ...
-
<table> <tr><td>1</td></tr> <tr><td>∫ x/√(1+x2)</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>5</td></tr> <tr><td>∫ √(x-1)/xdx=</td></tr> <tr><td>1</td></tr> </table> ...
-
<table> <tr><td>π/3</td></tr> <tr><td>∫ tanxdx=</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>π/2</td></tr> <tr><td>∫ sin2xdx=</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>1</td></tr> <tr><td>∫ 1/(√(1-x2))dx=</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>1</td></tr> <tr><td>∫ x/(√(1-x2))dx=</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>&infin</td></tr> <tr><td>∫ 1/(x2+4x+5)dx=</td></tr> <tr><td>-∞</td></tr> </table> ...
-
<table> <tr><td>4</td></tr> <tr><td>∫ x/(√(2+4x))dx=</td></tr> <tr><td>1</td></tr> </table> ...
-
<table> <tr><td>π</td></tr> <tr><td>∫ 1/(3+2cosx)dx=</td></tr> <tr><td>0</td></tr> </table> ...
-
<table> <tr><td>π/2</td></tr> <tr><td>∫ sinxcos2xdx=</td></tr> <tr><td>0</td></tr> </table> ...
-
Find dy/dx at x=0, y=sinh(coshx) ...
-
Find dy/dx at x=1, y=sinh-1√x ...