not sure i can kill this question... but just trying my hand at this...!!
setting 2k = Θ we get,
tan (Θ/2).sec Θ = 1 - cos Θsin Θ (sec Θ) = 1sin Θ.co sΘ - 1sin Θ = 2sin 2Θ - 1sin Θ
so the expression turns into,
\sum_{k=1}^{n} \frac{2}{sin (2)^{k+1}} - \frac{1}{sin (2)^{k}}
= 2sin 4 - 1sin 2 + 2sin 8 - 1sin 4 + 2sin 16 - 1sin 8 + .................
= -1sin 2 + 1sin 4 + 1sin 8 + 1sin 16 + ............. + 1sin 2n + 2sin (2)n +1
by using, 1sin 2Θ = cotΘ - cot2Θ
the expression can be furthur simplified to...
-1sin 2 + cot 2 - cot 2n + 2sin (2)n + 1
= cos 2 - 1sin 2 + 2sin (2)n + 1 - cos 2nsin 2n
= -tan1 + 2 - 2cos2 (2)n2 sin 2ncos 2n
= tan 2n - tan 1
does the answer match..!!