Rearrange the L . H . S . to obtain -
L . H . S . = √32 { sin ( 35 Î 96 ) }
Hence , taking the factor " √32 " to the other side ,
R . H . S = 2 √2 + √2 + √2 + ...... > 2
But L . H . S = sin ( 35 Î 96 ) < 1
Hence , there exists no such " n " .
$Determine a positive integer $n$ for which \\\\ $\underbrace{\sqrt{6+3\sqrt{2+\sqrt{2+\sqrt{2........+\sqrt{2}}}}}}_{(n)-times}=2\left \{ sin(\frac{35\pi}{96})+cos(\frac{19\pi}{96}) \right \}
Rearrange the L . H . S . to obtain -
L . H . S . = √32 { sin ( 35 Î 96 ) }
Hence , taking the factor " √32 " to the other side ,
R . H . S = 2 √2 + √2 + √2 + ...... > 2
But L . H . S = sin ( 35 Î 96 ) < 1
Hence , there exists no such " n " .