1
ith_power
·2008-11-21 05:51:13
sin a + sin(a+b) + sin (a+2b) +... sin(a+(n-1)b)
=let q.
then 2qsin(b/2)=cos(a-b/2)- cos(a+b/2)+cos(a+b/2)-...cos(a+(n-3/2)b) -cos(a+(n-1/2)b).
=2sin(a+((n-1)/2)b)* sin (nb/2).
here b=a, so ans..
2sin(a+nb/2)sin((n+1)b/2).
62
Lokesh Verma
·2008-11-21 05:52:46
dude this is good..
i like the complex power method.. it is easier and less dirtly.. actually not dirty at all.
Someone willing to post that solution?
33
Abhishek Priyam
·2008-11-21 06:00:54
It is the imaginary part of eia+ei2a...........
1
Rohan Ghosh
·2008-11-21 06:03:52
this is nothing but the imaginary part of
(cosa+isina)+(cosa+isina)2+....(cosa+isina)n
hence this is a geometric progression
and we get it as
(isina + cosa)((isina+cosa)n-1)/(isina+cosa-1)
=
(sina + cosa)(isinna-1+icosna)/(isina-1+cosa)
simplifying we get the imaginary term as =
2sin(a(n+1)/2)sin(na/2)