If a[p]2[/p] , b[p]2[/p] , c[p]2[/p] in a ΔABC are in A.P. Prove that cot A, cot B and cot C are also in A.P.

If a2 , b2 , c2 in a ΔABC are in A.P. Prove that cot A, cot B and cot C are also in A.P.

2 Answers

21
omkar ·

cot A, cot B and cot C are in A.P. if :
cot A – cot B = cot B – cot C

→ cos Asin A-cos BsinB = cos BsinB - cos Csin C

→sin(B-A)sinA sinB = sin(C-B)sinC sin B

→sin (B – A) sin C = sin (C – B) sin A

→ sin (B – A) sin (B + A) = sin (C – B) sin (C + B)

→sin2B – sin2A = sin2C – sin2B

→ b24R2 - a24R2 = c24R2 - b24R2 (using sine rule)

→ b2 -a2 = c2 - b2

→ 2 b2 =a2 + c2

→ a2,b2,c2 are in AP

→cot A, cot B and cot C are also in A.P.

Proved

·

thnx

Your Answer

Close [X]