Maximum value.

\hspace{-16}$\textbf{(1)\;\; If $\mathbf{x,y\in\mathbb{R}}$ and $\mathbf{x^2+y^2=1}$. Then Max. value of $\mathbf{\mid x-y \mid +\mid x^3-y^3 \mid=}$ }

9 Answers

1
fahadnasir nasir ·

sorry, I made a mistake
the answar is 3√2

262
Aditya Bhutra ·

i am getting 3√2/2

21
Arnab Kundu ·

let x=sinA y=cosA
Without loss of generality, let sinA≥cosA
so,the given expression in equivalent to:

sinA-cosA+sin3A-cos3A=(sinA-cosA)(1+sin2A+cos2A+sinAcosA)
=(sinA-cosA)(2+sinAcosA)
=2(sinA-cosA) + sinAcosA(sinA-cosA)
=2(sinA-cosA) + sin2A(sinA-cosA)/2
it will attain max. value when sinA-cosA is max.

so it is ≤2(1-0) +0(1-0)/2
=2
Ans. 2

21
Shubhodip ·

hmm

can you pls tell me when will the equality hold ?

21
Arnab Kundu ·

when x=1 y=0
x=-1 y=0

21
Shubhodip ·

ok

how can u say this

=2(sinA-cosA) + sin2A(sinA-cosA)/2
it will attain max. value when sinA-cosA is max.

?

21
Shubhodip ·

W.L.O.G

x≥y

so |x-y| + |x3- y3| = x-y + x3- y3

so maxima will occour when x>0 and y<0, let x= a>0, -y= b>0

so we have to maximize a+ a3+ b+ b3, when a2+ b2 = 1 (*)

W.L.O.G let a≥b

so (1+ a2) ≥ (1+ b2)

By chebycheffs inequality

a(1+a2)+ b(1+ b2)2 ≤ (a+b)2(1+a2+ 1+ b2)2

and also , by AM-GM , (a+b)24≤ a2+ b22

Giving (a+b) ≤√2 , combine this with (*) , to get the answer as 3/√2, equality when x=y= 1/√2

341
Hari Shankar ·

Somehow I am getting a different answer. I may have goofed up but:

\because \ (x^3-y^3) = (x-y)(x^2+xy+y^2) and (x^2+xy+y^2)\ge 0

x-y and x3-y3 have the same sign.

So WLOG x≥y and the expression is therefore(x-y)+(x^3-y^3) = (x-y)[1+(x^2+xy+y^2)] = (x-y)(2+xy)

Also xy = \frac{1-(x-y)^2}{2}

So the expression is \frac{t(5-t^2)}{2} where t=x-y≥0

Now, this is increasing in \left[0, \sqrt{\frac{5}{3}} \right] and decreasing thereafter.

So the max occurs when t= \sqrt{\frac{5}{3}} < \sqrt 2

and equals

\frac{5 \sqrt{5}}{3 \sqrt{3}}

1708
man111 singh ·

Thanks bhatt Sir. (Right answer)

also Thanks Subhodip, Arnab for valuable efford.

Your Answer

Close [X]