Proof

If in ΔABC ,cosA+2cosB+cosC=2
then prove that a,b,c are in AP

4 Answers

3
msp ·

cosA+cosC=2(1-cosB)

and A+B+C=pi

1
champ ·

msp,
your hint did not help :-(

106
Asish Mahapatra ·

cosA+cosC=2(1-cosB)

=> 2cos((A+C)/2)cos((A-C)/2) = 4sin2(B/2)
=> 2sin(B/2)cos((A-C)/2) = 4sin2(B/2)
=> cos((A-C)/2) = 2sin(B/2)
=> cos((A-C)/2) =2cos((A+C)/2)
=> cos((A-C)/2) - cos((A+C)/2) = cos((A+C)/2)
=> 2sin(A/2)sin(C/2) = sin(B/2)

=> 2(s-b)(s-c)bc(s-a)(s-b)ab = (s-a)(s-c)ac

=> 2(s-b) = b
=> a+b+c-2b = b
=> a+c=2b (proved)

1
champ ·

Thank you :-)

Your Answer

Close [X]