Properties of Triangles

If sin A,sin B,sin C are in A.P.
prove that the altitudes are in H.P .

1 Answers

2305
Shaswata Roy ·

Let's denote area by Δ.

\sin A,\sin B,\sin C \text{ are in AP}

\rightarrow 2R\sin A,2R\sin B,2R\sin C \text{ are in AP}

\rightarrow a,b,c \text{ are in AP}

\rightarrow \frac{1}{a},\frac{1}{b},\frac{1}{c} \text{ are in HP}

\rightarrow \frac{2\Delta}{a},\frac{2\Delta}{b},\frac{2\Delta}{c} \text{ are in HP}

\rightarrow h_a,h_b,h_c\text{ are in HP}

Where ha,hb,hc are the altitudes of the triangle.

Your Answer

Close [X]