If cos A + 2 cos Bcos A + 2 cos C =sin Bsin C
then prove that the triangle is isoceles or rt. angled.
-
UP 0 DOWN 0 0 1
1 Answers
Manish Shankar
·2014-01-20 04:11:38
cosA*sinC+2cosBsinC=sinBcosA+2cosCsinB
=> cosA(sinB-sinC)=2(sinBcosC-cosBsinC)
=>cosA*2*cos[(B+C)/2]*sin[(B-C)/2]=2sin(B-C)
proceed from here