A+B+C= π
prove that
\cot(A/2)+\cot(B/2)+\cot(B/2)=\cot(A/2)\cot(B/2)\cot(C/2)
-
UP 0 DOWN 0 0 2
2 Answers
Optimus Prime
·2009-03-21 09:11:20
A/2+B/2+C/2=∩/2
tan∩/2= (tanA/2+tanB/2+tanC/2)-tanA/2tanB/2tanC/2 /[1-(tanB/2tanC/2+tanC/2tanA/2+tanA/2tanB/2)]
hence the denominator is 0
tanB/2tanC/2+tanC/2tanA/2+tanA/2tanB/2=1
multiplying by cotA/2cotB/2cotC/2
\SigmacotA/2=cotA/2cotB/2cotC/2