Solve the inequality

1. Solve the inequality sin x + cos 2x > 1 if 0 ≤ x ≤ π/2

2. For a triangle ABC, it is given that : cos A + cos B + cos C = 3/2. Prove that the triangle is equilateral.

9 Answers

21
omkar ·

Let sin x = t

⇒ cos 2x = 1 – 2t2

⇒ the inequality is : t + 1 – 2t2 > 1

⇒ t – 2t2 > 0

⇒ 2t2 – t < 0

⇒ t(2t – 1) < 0

⇒ (t – 0) (t – 1/2) < 0

⇒ 0 < t < 1/2
⇒ 0 < sin x < 1/2

In 0 ≤ x ≤ π/2, this means that 0 < x < π/6 is the solution

1708
man111 singh ·

$\textbf{Here $\mathbf{A+B+C=\pi}$ and $\mathbf{0\leq A,B,C\leq \mathbf{\pi}}}$\\\\ Now Here Given that $\mathbf{cos\;A+\underbrace{\mathbf{cos\:B+cos\:C}}=\frac{3}{2}}$\\\\\\ $\mathbf{1-2sin^2\left(\frac{A}{2}\right)+2\cdot cos\left(\frac{B+C}{2}\right)\cdot cos\left(\frac{B-C}{2}\right)=\frac{3}{2}}$\\\\\\ $\mathbf{1-2\cdot sin^2\left(\frac{A}{2}\right)+2.sin\left(\frac{A}{2}\right).cos\left(\frac{B-C}{2}\right)=\frac{3}{2}}$\\\\\\ $\mathbf{4.sin^2\left(\frac{A}{2}\right)-4.sin\left(\frac{A}{2}\right).cos\left(\frac{B-C}{2}\right)+1=0}$\\\\\\ $\textbf{For Real Roots} \mathbf{Here\ D\geq 0}$\\\\ \textbf{So $\mathbf{16.cos^2\left(\frac{B-C}{2}\right)-4.4.1\geq 0}$}\\\\\\ So $\mathbf{cos^2\left(\frac{B-C}{2}\right)\geq 1\Leftrightarrow cos^2\left(\frac{B-C}{2}\right)=1\Leftrightarrow cos\left(\frac{B-C}{2}\right)=1}$\\\\\\ $\mathbf{\frac{B-C}{2}=0\Leftrightarrow B=C}$\\\\\\ Similarly We Get $\mathbf{A=C}$\\\\\\ So $\boxed{\boxed{\mathbf{A=B=C=\frac{\pi}{3}}}}$

21
Shubhodip ·

Jensen's inequality is very easy to grasp and solves lot's of problems.

search in TIIT and try to do the 2nd question .

1708
man111 singh ·

yes Shubhodip you are saying Right. Using Jesan Inequality We can solve it with in 2 or 3 lines.

341
Hari Shankar ·

actually what jagdish did is right. you cant use jensen for cosine in this domain as the function is not concave throughout

1708
man111 singh ·

O Sorry bhatt Sir you are saying Right function f(x) = cos x is Concave down in [-pi / 2 , pi / 2].

So Sir How Can I solve Using Inequality in (ii) Question.

21
omkar ·

Another method

2)

1708
man111 singh ·

Thanks Omkar for Nice alternative.

21
Shubhodip ·

but what i said was not wrong either :P

i have recalled how to do it by jensens

note that cosA + cosB ≤ 2 sinC2

so it follows that cosA + cosB + cosC ≤sinA2 + sinB2 + sinC2

By jensens sinA2 + sinB2 + sinC2 ≤32

probably i read that in Arihant's MO book

Your Answer

Close [X]