21
omkar
·2011-05-11 22:10:34
Let sin x = t
⇒ cos 2x = 1 – 2t2
⇒ the inequality is : t + 1 – 2t2 > 1
⇒ t – 2t2 > 0
⇒ 2t2 – t < 0
⇒ t(2t – 1) < 0
⇒ (t – 0) (t – 1/2) < 0
⇒ 0 < t < 1/2
⇒ 0 < sin x < 1/2
In 0 ≤ x ≤ π/2, this means that 0 < x < π/6 is the solution
1708
man111 singh
·2011-05-12 01:50:18
$\textbf{Here $\mathbf{A+B+C=\pi}$ and $\mathbf{0\leq A,B,C\leq \mathbf{\pi}}}$\\\\ Now Here Given that $\mathbf{cos\;A+\underbrace{\mathbf{cos\:B+cos\:C}}=\frac{3}{2}}$\\\\\\ $\mathbf{1-2sin^2\left(\frac{A}{2}\right)+2\cdot cos\left(\frac{B+C}{2}\right)\cdot cos\left(\frac{B-C}{2}\right)=\frac{3}{2}}$\\\\\\ $\mathbf{1-2\cdot sin^2\left(\frac{A}{2}\right)+2.sin\left(\frac{A}{2}\right).cos\left(\frac{B-C}{2}\right)=\frac{3}{2}}$\\\\\\ $\mathbf{4.sin^2\left(\frac{A}{2}\right)-4.sin\left(\frac{A}{2}\right).cos\left(\frac{B-C}{2}\right)+1=0}$\\\\\\ $\textbf{For Real Roots} \mathbf{Here\ D\geq 0}$\\\\ \textbf{So $\mathbf{16.cos^2\left(\frac{B-C}{2}\right)-4.4.1\geq 0}$}\\\\\\ So $\mathbf{cos^2\left(\frac{B-C}{2}\right)\geq 1\Leftrightarrow cos^2\left(\frac{B-C}{2}\right)=1\Leftrightarrow cos\left(\frac{B-C}{2}\right)=1}$\\\\\\ $\mathbf{\frac{B-C}{2}=0\Leftrightarrow B=C}$\\\\\\ Similarly We Get $\mathbf{A=C}$\\\\\\ So $\boxed{\boxed{\mathbf{A=B=C=\frac{\pi}{3}}}}$
21
Shubhodip
·2011-05-12 06:34:32
Jensen's inequality is very easy to grasp and solves lot's of problems.
search in TIIT and try to do the 2nd question .
1708
man111 singh
·2011-05-12 06:54:50
yes Shubhodip you are saying Right. Using Jesan Inequality We can solve it with in 2 or 3 lines.
341
Hari Shankar
·2011-05-12 07:54:30
actually what jagdish did is right. you cant use jensen for cosine in this domain as the function is not concave throughout
1708
man111 singh
·2011-05-12 08:08:29
O Sorry bhatt Sir you are saying Right function f(x) = cos x is Concave down in [-pi / 2 , pi / 2].
So Sir How Can I solve Using Inequality in (ii) Question.
1708
man111 singh
·2011-05-12 19:58:33
Thanks Omkar for Nice alternative.
21
Shubhodip
·2011-06-07 00:21:46
but what i said was not wrong either :P
i have recalled how to do it by jensens
note that cosA + cosB ≤ 2 sinC2
so it follows that cosA + cosB + cosC ≤sinA2 + sinB2 + sinC2
By jensens sinA2 + sinB2 + sinC2 ≤32
probably i read that in Arihant's MO book