Sum of Cosines

Just saw this problem in some Coaching Institute material.

If cos A + cos B + cos C = sin A + sin B + sin C = 0, prove that cos (A-B) + cos (B-C) + cos (C-A) = -3/2

4 Answers

3
msp ·

sir i hope dat u maynot like this one.

cosA+cosB+cosC=0 (1)

sinA+sinB+sinC=0 (2)

squaring 1 and 2 and then adding will yields us the required result.

341
Hari Shankar ·

Yeah thats correct.

There is a way to do it without using trigonometry. Can anyone try it?

62
Lokesh Verma ·

\\e^{ia}+e^{ib}+e^{ic}=0 \\e^{-ia}+e^{-ib}+e^{-ic}=0 \\e^{ia}+e^{ib}+e^{ic}=0 \\e^{-ia}+e^{-ib}+e^{-ic}=0 3+\sum{e^{i(a-b)}}=0

Hence proved :)

62
Lokesh Verma ·

\\e^{ia}+e^{ib}=-e^{ic} \\e^{-ia}+e^{-ib}=-e^{-ic} \\2+e^{i(a-b)}+e^{i(b-a)}=1 \\e^{i(a-b)}+e^{i(b-a)}=-1

Hence we have proved that \cos(a-b)=-1/2
same with b-c and c-a

adding them we get the result....

Somehow for a strange reason this result does not go well in my stomach..

can someone point out my mistake ??

Or is it not a mistake at all!

Your Answer

Close [X]