trignometry identities

2.A + B + C = 180 prove that cos A/2 + cos B/2 + cos C/2 = 4cos(∏-A)/4 . cos(∏-B)/4 . cos(∏-C)/4

2 Answers

11
Tush Watts ·

R.H.S = 4\ cos\ (\frac{\pi }{4} - \frac{A}{4})\ cos\ (\frac{\pi }{4} - \frac{B}{4})\ cos\ (\frac{\pi }{4} - \frac{C}{4})

= \frac{4}{\sqrt{2}\sqrt{2}\sqrt{2}} \left[cos\frac{A}{4}\ + Sin\ \frac{A}{4} \right]\left[cos\frac{B}{4}\ + Sin\ \frac{B}{4} \right]\left[cos\frac{C}{4}\ + Sin\ \frac{C}{4} \right]

= \sqrt{2} \left[Sin\ (\frac{A}{4}+\frac{B}{4}+\frac{C}{4}) + Cos\(\frac{A}{4}+\frac{B}{4}+\frac{C}{4}) \right]

= 2\ Sin\ (\frac{A}{2} + \frac{B}{2} + \frac{C}{2})

What to do next ? [2]

1
jangra28192manoj jangra ·

thanks

Your Answer

Close [X]