How far did you get?
Use the tangent addition identity and remember that tan(PI/4) = 1.
Help me friends.I am not able to solve it.
If tan( (pi/4) + y/2) = tan3 ( (pi/4) + x/2),
prove that sin(y)/ sin(x) = (3 + sin2x)/ (1+ 3sin2x)
1+tan(y/2)1-tan(y/2)=[1+tan(x/2)1-tan(x/2)]3
cos(y/2)+sin(y/2)cos(y/2)-sin(y/2)=[cos(x/2)+sin(x/2)cos(x/2)-sin(x/2)]3
1+siny1-siny=[1+sinx1-sinx]3
1+siny1-siny=1+3sinx+3sin2x+sin3x1-3sinx+3sin2x-sin3x
Applying componendo and dividendo...
siny=3sinx + sin3x1+3sin2x
sin ysin x=3 + sin2x1+3sin2x..(Hence proved)..:)
How far did you get?
Use the tangent addition identity and remember that tan(PI/4) = 1.