Trigonometric identity, IIT JEE

Evaluate: \sin \left(\frac{\pi}{14} \right)\sin \left(\frac{3\pi}{14} \right)\sin \left(\frac{5\pi}{14} \right)\sin \left(\frac{7\pi}{14} \right)\sin \left(\frac{9\pi}{14} \right)\sin \left(\frac{13\pi}{14} \right).sin(11pi/14)

Today I am on an IIT JEE past papers frenzy!

This will last for 1 week atleast..
please bear with me ;)

14 Answers

1
Optimus Prime ·

we love to bear such things

62
Lokesh Verma ·

but then solve these too..

I am only trying to show how simple JEE questions generally are! :)

1
Optimus Prime ·

ya solved sum of the given check if rite

11
Mani Pal Singh ·

the ques is

cos6pi/14 x cos4pi/14 x cos2pi/14 x sin5pi/14 x sin pi/14
multiply upper niiche by 2 to make the required form[1]

nw apply formula of sina + sinb =2sina+b/2 cos a+b/2

62
Lokesh Verma ·

so what's the final answer? ;)

24
eureka123 ·

sir isn't a term missing ?????becoz.......
1,3,5,7,9,_,13

11
virang1 Jhaveri ·

first Sin(7∩/14) = sin∩/2 = 1

62
Lokesh Verma ·

yup eureka.. corrected! :)

11
Anirudh Narayanan ·

Isn't there a direct formula for this one?

106
Asish Mahapatra ·

\sin (\pi /14) = sin(\pi /2 -3\pi/7) = cos(3\pi /7)
\sin (3\pi /14) = sin(\pi /2 -2\pi/7) = cos(2\pi /7)
\sin (5\pi /14) = sin(\pi /2 -\pi/7) = cos(\pi /7)
\sin (7\pi /14) = sin(\pi /2) = 1
\sin (9\pi /14) = sin(\pi /2 +\pi/7) = cos(\pi /7)
\sin (11\pi /14) = sin(\pi /2 +2\pi/7) = cos(2\pi /7)
\sin (13\pi /14) = sin(\pi /2 +3\pi/7) = cos(3\pi /7)

cos(3\pi /7) = -cos(\pi -4\pi /7) = -cos(4\pi /7)

so the final equation becomes

[cos(3\pi /7)*cos(2\pi /7)*cos(\pi /7)]^2 = [cos(\pi /7)*cos(2\pi /7)*cos(4\pi /7)]^2

62
Lokesh Verma ·

asish you can do more than this!

106
Asish Mahapatra ·

= [sin(8Ï€/7)/8*sin(Ï€/7)]2
= 1/64

[calculation errors might be there]

106
Asish Mahapatra ·

i know .. i accidentally pressed add post when i still had the last step to write...

62
Lokesh Verma ·

okie.. good work dude :)

Your Answer

Close [X]