Trigonometric Product

\hspace{-16}$Evaluate $\mathbf{\cos (a).\cos (2a).\cos(3a).........\cos(999a)=}$\\\\ Where $\mathbf{a=\frac{2\pi}{1999}}$

6 Answers

1
fahadnasir nasir ·

It is 0

1
rancho6 ·

how can u say that it is 0?

1
pjsudharshan ·

how????????/

21
Shubhodip ·

We are looking for

\prod_{i=1}^{999}cos(\frac{2i\pi}{1999})= \frac{\prod_{i=1}^{999}sin(\frac{4i\pi}{1999})}{2^{999}\prod_{i=1}^{999}sin(\frac{2i\pi}{1999})}

But we have
\prod_{i=1}^{999}sin(\frac{4i\pi}{1999})= \prod_{i=1}^{499}sin(\frac{4i\pi}{1999})\prod_{i=500}^{999}sin(\frac{4i\pi}{1999})= \prod_{i=1}^{499}sin(\frac{4i\pi}{1999})(-1)^{500}\prod_{i=500}^{999}sin(\frac{(3998-4i)\pi}{1999})

=\prod_{i=1}^{999}sin(\frac{2i\pi}{1999})

Hence

\prod_{i=1}^{999}cos(\frac{2i\pi}{1999})= \frac{1}{2^{999}}

1
rishabh ·

@nasiko i have some confusion in ur 2nd step

21
Shubhodip ·

i have used sin(a) = - sin(2pi- a)

i guess if u write it completely u will understand

i wrote completely when i solved it, while posting i used this notation

Your Answer

Close [X]