we must have a_1 + a_2 = 0 (put x = 0)
a_1 - a_2 + a_3 = 0 (put x = pi/2)
2a_1 + a_3 = 0 (put x = pi/4)
so a_1 = -c/2, a_2 = c/2, a_3 = c for all real c.
Plug them in the equation, to see that it works for all x.
So d) infinite would be the answer.
The no. of possible triples (a1,a2,a3) such that a1+a2cos2x+a3sin2x=0 for all x is
(a)0 (b)1
(c)2 (d)Infinite
\hspace{-16}$Here $\bf{a_{1}+a_{2}.\cos(2x)+a_{3}.\sin^2(x)=0}$\\\\\\ $\bf{a_{1}+a_{2}.\cos(2x)+\frac{a_{3}}{2}(2\sin^2(x))=0}$\\\\\\ $\bf{a_{1}+a_{2}.\cos(2x)+\frac{a_{3}}{2}.\left\{1-\cos(2x)\right\}=0}$\\\\\\ $\bf{\left(a_{1}+\frac{a_{3}}{2}\right)+\left(a_{2}-\frac{a_{3}}{2}\right).\cos(2x)=0=0+0.\cos(2x)\;\forall x\in \mathbb{R}}$\\\\\\ So $\bf{\left(a_{1}+\frac{a_{3}}{2}\right)=0}$ and $\bf{\left(a_{2}-\frac{a_{3}}{2}\right)=0}$\\\\\\ Now Let $\bf{\frac{a_{3}}{2}=\lambda\Leftrightarrow a_{3}=2\lambda}$ Where $\bf{\lambda\in \mathbb{R}}$\\\\\\ So $\bf{a_{1}=-\lambda}$ and $\bf{a_{2}=\lambda}$ and $\bf{a_{3}=2\lambda}$\\\\\\ So $\bf{\left(a_{1}\;,a_{2}\;,a_{3}\right)=\left(-\lambda\;,\lambda\;,2\lambda\right)}$ Where $\bf{\lambda\in \mathbb{R}}$
we must have a_1 + a_2 = 0 (put x = 0)
a_1 - a_2 + a_3 = 0 (put x = pi/2)
2a_1 + a_3 = 0 (put x = pi/4)
so a_1 = -c/2, a_2 = c/2, a_3 = c for all real c.
Plug them in the equation, to see that it works for all x.
So d) infinite would be the answer.