-
Two distinct numbers a and b are chosen randomly from the set {2, 22, 23, 24, ......, 225}. Find the probability that logab is an integer. ...
-
*Image* ...
-
calcullate : Lt asinx-xsina /ax2-ax2x x→a. ...
-
A ball is dropped on a floor from a height of 2.0m. After the collision it rises upto a height of 1.5m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature ...
-
Two particles ,1 and 2, move with constant velocities v1 and v2 . At the initial moment their radius vectors are r1 and r2 . How must these four vectors be interrelated for the particles to collide ? ...
-
*Image* a)For the first part the expected value would be = E(x)=\frac{1}{2}+2\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)^3+\cdots=2 b)For the second part the expected value would be = E(x)=\frac{1}{2}+\frac{2}{4}+\fr ...
-
Try this problem,it's really interesting. *Image* ...
-
A ball is rolling without slipping in a spherical shallow bowl as shown and executing SHM. If radius of the ball is doubled, the period of oscillation *Image* A) increases slightly B) is reduced by a factor of 1/2 C) is incre ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
\text{1)Evaluate:} a)\lim_{n\rightarrow \infty}\frac{1}{2n}\log\binom{2n}{n} b)\lim_{n\rightarrow \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right] \text{2)Let } a_{1}=1 \text{ and }a_{n}=n(a_{n-1}+1)\ \ ...
-
S=1-1+1-1+1-1....................... infinity now thus, S=1- (1-1+1-1+1-1....................... infinity) thus S=1-S thus 2S=1 S=1/2 ...
-
A sphere of radius R and surface charge density σ is rotating about an axis passing through its centre with angular velocity ω. Find the magnetic induction at the centre of the sphere. ...
-
*Image* Post your solutions ...
-
Let f:R->R be continuous function which satisfies f(x)=0∫x f(t)dt, then the value of f(ln5) is: (a) 0 (b) 2 (c) 4 (d) 6 ...
-
\hspace{-16} $ Minimum value of $\bf{\left|z-1-i \right| + \left |z+2-3i \right| + \left |z+3+2i \right|}$\\\\\\ where $\bf{z = x+iy}$ and $\bf{i = \sqrt{-1}}$ ...
-
*Image* ...
-
Find the greatest integer k for which 1991^k divides 1990^1991^1992 + 1992^1991^1990 ...
-
Find the summation s=x+x2+x4+x8.......till infinity ...
-
Find the summation s=x+x2+x4+x8.......till infinity ...
-
Find the summation s=x+x2+x4+x8.......till infinity ...
-
if, 2x=3y=6-z,then what is the value of 1/x + 1/y + 1/z ..........????? plz do reply fast........ ...
-
\hspace{-16}$(1): The no. of Integer ordered pairs $\bf{(x,y)}$ in $\bf{x^2+y^2 = 2013}$\\\\\\ $(2):$ The no. of Integer ordered pairs $\bf{(x,y,z)}$ in $\bf{\begin{Vmatrix} \bf{x=yz} \\ \bf{y=zx} \\ \bf{z=xy} \end{Vmatrix}}$ ...
-
A circle along with one of its diameter AB are given.There lies a point P in the plane.Construct the perpendicular to AB through P using only a ruler.(A ruler can only connect 2 points). ...
-
*Image* Find T1 and T2 ...
-
*Image* Thanx in advance... ...
-
A small block of mass m is placed on the top of a right triangular block of mass M, which in turn is placed on a horizontal surface. All the surfaces are frictionless. Angle of inclination is α. Height of the triangular bloc ...