-
i find it hard to these questions........... so plz help 1) (2cos40 -cos20)/sin20 2) tan10-tan50+tan70 ...
-
Prove that in every triangle we have: ma*mb>=ra*rb*rc. ma is length of median drawn from A, same is mb. ra= exradius of A ...
-
[sry i deleted it] ...
-
If a right angle is divided into three parts α,β,γ prove that for all possible divisons, tanα+tanβ+tanγ>1+tanαtanβtanγ ...
-
If cosx+cosy+cosz=0 & cos3x+cos3y+cos3z=0 the prove that cos2x.cos2y.cos2z≤0 x,y,zε R All the sirs plz dont post the soln to this one[1] ...
-
please prove these identities : $ \sin (\frac{\pi}{2m})\sin (\frac{2\pi}{2m})\sin (\frac{3\pi}{2m})\dots\sin (\frac{(m-1)\pi}{2m}) =\frac{\sqrt{m}}{2^{m-1}} $ \sin (\frac{\pi}{4m})\sin (\frac{3\pi}{4m})\sin (\frac{5\pi}{4m})\ ...
-
If cos4θ.sec2α, 1/2 and sin4θ.cosec2α are in AP, then cosec8θsec6α , 1/2, sin8θ.cosec6α are in a)AP b)GP c)HP d)none ans a) ...
-
find the angles and the side lengths of the pedal triangle of triangle ABC ....a ,b ,c as usual side lengths of triangle ABC with angle A B and C **EDITED** LEAVE IT I GOT IT ...
-
\sum_{r=0}^{9}{\left(-1 \right)^r\cos^{10}\frac{r\pi}{10}} any short solution using complex? ...
-
cosnθ = [P][/n] (cosθ) [P][/n] is a polynomial of degree n like [P][/2] = 2x^{2}-1 (n is a natural no.) then find (x+\sqrt{x^{2}-1})^{n} +(x-\sqrt{x^{2}-1})^{n} in terms of [P][/n] ...
-
In a triangle ABC ,AD is the perpendicular to BC .the inradii of ADC,ADB and ABC are x,y,z .find the relation between x ,y and z? note::the relationship shud have only x y and z.....no oder variable. ...
-
for practice \text{if x,y,and z are the distances from vetrices A,B,and C to orthocentre respectively then prove that }\\ \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{abc}{xyz} ...
-
is tata mvgraw hill course in maths good? ...
-
Find general value of x which satsfies the equation 2sin(3x+ π/4 ) = 1+8sin2x cos22x . ...
-
If θ is the fundamental period of the function f(x) = sin99x + sin99(x + 2π/3) + sin99(x + 4π/3), then the complex number z = r(cosθ + isinθ) lies in the quadrant??? I m getting θ= 2π/3 and hence the ans should be 2... ...
-
. ...
-
$\textbf{If $\mathbf{S=(sin\;x+sin\;2x+sin\;4x)^5 -(-sin\;x+sin\;2x+sin\;4x)^5-(sin\;x-sin\;2x+sin\;4x)^5-(sin\;x+sin\;2x-sin\;4x)^5$}}$\\\\ $\textbf{Then Calculate value of $\mathbf{S}$ at $\mathbf{x=20^0}$}. ...
-
hi frnds, I am confused. i am getting two different answers .help me out. Solve; 4sin(2x) + 3 cos (2x) =5 My solution is: 4(2sinx cos x) + 3 (2cos2x - 1) =5 →8sinx cosx + 6cos2x = 8 Divide both sides by cos2x →8tanx + 6 = ...
-
\hspace{-16}$Show that the equation\\\\ $\mathbf{e^{1-\tan^{-1}x}+\tan^{-1}(e^x-1)=2}$\\\\ has no solution for $x\in\mathbb{R}$ ...
-
\hspace{-16}$It is known about real $\mathbf{a}$ and $\mathbf{b}$ that the inequality $\mathbf{a\; cosx +b\;cos3x >1}$\\\\ has no real solutions.then Prove that $\mathbf{\mid b\mid \leq 1}. ...
-
\text{The equation} (1+k)\cdot\frac{\cos x\cdot\cos(2x-\alpha)}{\cos(x-\alpha )} =1+k\cos 2x \; has no repeated root in it's domain of definition, if : a) |k| ≤ |csc α| , k ≠± 1 a) |k| ≤ |csc α| , k ≠- 1 a) |k| ≥ ...
-
\hspace{-16}$Calculate Sum of \\\\ $\mathbf{(1)\;\; \cos^{2n}1^{\arc0}+\cos^{2n}2^{\arc0}+\cos^{2n}3^{\arc0}+\cos^{2n}4^{\arc0}+..........+\cos^{2n}89^{\arc0}=}$\\\\ $\mathbf{(2)}$ \;\; Prove that $\mathbf{\cos^{10}1^{\arc0}+ ...
-
For x>0, and A,B,C being the angles of a triangle, Prove that *Image* ...
-
\hspace{-16}$Evaluate $\mathbf{\sum_{r=0}^{n-2}2^r.\tan \left(\frac{\pi}{2^{n-r}}\right)}\forall \mathbf{n\in \mathbb{Z}\geq 2}$ ...
-
\hspace{-16}$Let $\mathbf{P(x)}$ is a Quadratic in $\mathbf{x}$ Satisfying \\\\ $\mathbf{P(0)=\cos^3(40^0)\;, P(1)=\cos (40^0).\sin^2(40^0)\;,P(2)=0}$\\\\ Then $\mathbf{P(3)=}$ ...
-
\hspace{-16}$The Solution of the Inequality\\\\ $\mathbf{(\cot ^{-1}x).(\tan^{-1}x)+\left(2-\frac{\pi}{2}\right).\cot^{-1}x-3\tan^{-1}x-3.\left(2-\frac{\pi}{2}\right)>0}$ ...
-
\hspace{-16}$No. of Integral ordered pairs $\bf{(x,y)}$ satisfying the equation\\\\\\ $\bf{\tan^{-1}\left(\frac{1}{x}\right)+\tan^{-1}\left(\frac{1}{y}\right)=\tan^{-1}\left(\frac{1}{10}\right)}$ ...
-
\hspace{-16}\bf{\tan(1^{0})}$ is $\bf{\mathbb{R}}$ational or $\bf{\mathbb{I}}$rrational ...
-
If cosec-1x = 2 cot-12 + cos-1 (frac{3}{5}) , then x = ...
-
If x ≥ 1, then 2 tan -1x + sin-1 frac{2x}{1+{{x}^{2}}} is ...